US 2005/0060687 Al

details of the actual programming associated with these
objects in large part are not represented in the OED and are
not crucial to an understanding of the present invention. The
actual programming can be described in documentation
separate from the OED, as discussed in more detail below.

[0054] The OEDs of the present invention have many
uses. They may be used to document pre-existing software.
Alternately, they may be used during software development
as a means for a business logic software developer (archi-
tect) to describe the business logic of a GUI application at
a high level without defining the appearance of the actual
GUI programming elements, which details are left to the
GUI programmer who actually generates the code. Accord-
ingly, in one use, the web page 200 (comprising windows
201a and 201b) can pre-exist the OEDs and OEDs can be
created for windows 201a and 2015 from the web page (or,
for that matter, from the code that generates the windows).
Alternately, the OEDs can be created by an application
architect and given to a programmer who will write the code
for generating the windows based on the OEDs. This frees
the business logic architect from having to be concerned
with the presentation logic. Likewise, it provides the GUI
programmer with all the information about the business
logic necessary to build the GUI, but gives him total
freedom to develop the “look and feel” of the interface.
Thus, both the business logic architect and the GUI pro-
grammer can concentrate on the area of their specific exper-
tise without being concerned about the other aspects of the
application program. FIG. 5 is an OED in accordance with
the present invention diagram corresponding to the
FLIGHTS window 201a shown in FIGS. 2 and 3 and FIG.
6 is an OED diagram in accordance with the present inven-
tion corresponding to the FLIGHTS RESULTS window
2016 shown in FIGS. 2 and 4.

[0055] Before describing the OEDs shown in FIGS. 5 and
6, a description of at least one particular exemplary set of
rules and recommendations for preparing OEDs in accor-
dance with one embodiment of the invention using the
symbol library shown in FIG. 1 is appropriate.

[0056] Each OED should have a particular main object.
For any given application, any object sufficiently complex to
require specific description in order to properly to enable a
programmer to write the desired code or sufficiently com-
plex to warrant separate documentation after written using
traditional criteria and common sense should have its own
OED. The main object of an OED may be almost any object
type, but most often will be higher level dynamic object such
as a window, as illustrated in each of FIGS. 5 and 6, or an
overall system, application or project (i.e., an application
object), as illustrated in FIG. 8 to be discussed further
below. Since such objects tend to be complicated, i.e., have
many other objects associated therewith or defined there
within. On the other hand, static objects, such as buttons and
data structures, and lower level dynamic objects, such as
scripts often are quite simple and/or self-explanatory so that
they do not require a separate OED.

[0057] In a preferred embodiment of the invention, the
OEDs are never used to represent program calls. Thus,
linking a method object to a window object in an OED does
not mean that the window will call that method. Rather, it
means that the method is available in that window and any
event script assigned to the window or to another object
within the window object can invoke that method.

Mar. 17, 2005

[0058] The preparer of the OED (let us assume it is a
program architect preparing an OED for use by a program-
mer in generating GUI code) should start an OED by
drawing (or dragging and dropping in the case of a software
implementation of the invention) the main object of the
particular OED, whether it is an application, a window or
something else. The architect should then place a circle
around it. The object with the circle around it will be called
the main object and it is the object that is being defined in
that particular OED. In a preferred embodiment, any inher-
itance of the main object is represented within the big circle.

[0059] Referring to FIG. 5, for example, it shows an OED
501a describing the main FLIGHTS window 201a shown in
FIG. 3 of the web page 200 of FIG. 2. As noted above, this
exact window may be used in a number of the pages of the
web site. The main flights window OED 500z is developed
by first drawing a window object symbol 501. Next, a big
circle 503 is drawn around window symbol 501 to define it
as the main object of OED 500. Preferably, inheritance is
represented within the big circle 503. Accordingly, inherit-
ance symbol 505 and the class that is the source of the
inherited characteristics is drawn within the circle 503. In
this case, the source is the class “windows”, and it is
represented by a class symbol 507. The inheritance symbol
505 should be drawn between the object inheriting the
features, namely, window object 501, and the object from
which it is inheriting those features, namely, class object
507, with the arrow pointing toward the object that is
inheriting the features. Event scripts that are executed upon
the opening or closing of the main object, i.e., the FLIGHTS
window 501, also may be placed within the big circle 503.
In this particular example, there is a script for each of those
events and they are represented in the drawing by script
symbols 509 and 511 corresponding to scripts executed upon
opening and closing, respectively, of the FLIGHTS window
501. The SCRIPTS 509 and 511 are connected by a simple
line to the object to which they are assigned. Event script
symbols such as symbols 509 and 511 in FIG. 5 do not
represent the code module, e.g., method, that is invoked by
the script. They represent the script. The method invoked by
the event script is separately represented in an OED with a
method type symbol. The OED or collection of OEDs that
represent an application should show that the method
invoked by the event script is available to the main object of
the OED on which the event script appears. Thus, as will be
seen from the discussion further below, the relevant method
should be shown either in this OED linked to window
symbol 501 or, alternatively, in the OED of another object
from which the main object, window 501, of this OED has
inheritance.

[0060] In a preferred embodiment of the invention, essen-
tially everything else is shown outside of the big circle,
including event scripts that are executed responsive to any
events other than opening and closing of the main object of
the diagram. Except for objects that are logically connected
to another object by one of the three previously defined
relationships that have their own symbols (namely, inherit-
ance, data transfer, and remote link), all other relationships
between objects in an OED (i.e., being assigned to another
object or being defined within another object) preferably are
represented by a simple line between the two objects.
Generally, the relationship between the objects so linked will
be self-explanatory simply based on the types of the two
objects. Thus, the lines normally would not need an arrow at



